- 无标题文档
查看论文信息

中文题名:

 纳米铁镍双金属去除噬菌体f2的研究    

姓名:

 康敉    

学科名称:

 环境科学    

学生类型:

 学士    

学位名称:

 工学学士    

学校:

 中国人民大学    

院系:

 环境学院    

专业:

 环境科学    

第一导师姓名:

 程荣    

完成日期:

 2016-05-12    

提交日期:

 2016-05-12    

中文关键词:

 纳米铁镍 噬菌体f2 双金属 微生物     

中文摘要:

  本文利用实验室自制设备制备了纳米铁镍双金属(nFe/Ni),扫描电镜(SEM)和X射线衍射(XRD)分析表明纳米颗粒呈球形,平均粒径为99 nm。利用纳米零价铁(nFe)与nFe/Ni处理水中的噬菌体f2,结果表明nFe/Ni对噬菌体f2的去除率明显高于nFe。同时,本文对影响噬菌体f2去除率的因素(初始pH值,病毒的初始浓度、nFe/Ni剂量、转速、温度和铁镍比)进行了研究,结果显示在受试pH值范围内(5-8),噬菌体f2的去除率无明显变化;噬菌体f2的去除率与转速呈正相关,与噬菌体f2的初始浓度呈负相关;随着nFe/Ni投加量的增加,噬菌体f2的去除率增加,但过多的nFe/Ni投加量可能造成纳米材料的团聚,降低去除率;在反应初始阶段,噬菌体f2的去除率随着温度的升高而升高,但随着反应的进行,由于高温会加快铁的化学腐蚀,噬菌体f2的去除率反而降低。当Fe: Ni=5:1时,噬菌体f2的去除率最高,在1 h内即完全去除。其中相关性分析表明nFe/Ni去除噬菌体的绝对量与病毒初始浓度的相关性最好,而与温度和纳米铁镍的剂量相关性最差。对nFe/Ni去除噬菌体f2的机理研究表明nFe/Ni在有氧条件下对噬菌体f2的去除率明显高于无氧条件,Ni在系统中起催化作用,作用于噬菌体f2的灭活因子主要为·OH、高价铁和·O2-,H·可能也发挥一定的作用。

 

关键词:纳米铁镍,噬菌体f2,双金属,微生物

外文摘要:

In this works, the nanoscale Iron-Nickel bimetallic particles (nFe/Ni) were synthesized using the self-designed device. Scanning electron microscope (SEM) and X ray diffraction (XRD) showed the nanoscale particles was spherical and its average particle size was 99 nm. In addition, the removal efficiency of bacteriophage f2 in water by nFe/Ni were explored and also compared to that by nanoscale zero-valent iron (nFe), which showed that nFe/Ni had a significant advantage in removing bacteriophage f2 than nFe. Besides, the influence of pH value, initial concentration of bacteriophage f2, nFe/Ni dose, rotation rate, temperature and ratio of Fe:Ni on the removal rate of bacteriophage f2 were studied. The result revealed that, the removal rate of bacteriophage f2 had no obvious change in the pH range of subject (5-8), and it was positively correlates with rotation rate and negative correlativity with initial concentration of bacteriophage f2. Meanwhile, the removal rate of bacteriophage f2 improved with the increasing of nFe/Ni dose and temperature during initial stage of the reaction, but a heavy nFe/Ni dose could decrease the removal rate for the aggregation of nanomaterial, and a high temperature could also decrease the removal rate for the chemical corrosion on iron. The bacteriophage f2 was completely removed in an hour with a highest removal rate when the ratio of Fe:Ni was 5:1.The correlation analysis illustrated that the number of bacteriophage f2 removed by nFe/Ni had the best correlation results with the initial concentration of virus compared to the worst concentration with temperature and nFe/Ni dose. Furthermore, it was better under air-saturated conditions when removing the bacteriophage f2 by nFe/Ni than deaerated conditions, and the Ni was as catalyzer in the system, while the effective inactivation factors were hydroxyl free radical (·OH), ferric iron and superoxide free radical (·O2-), maybe containing H·.

 

Key Word:nanometer iron-nickel, bacteriophage f2, bimetal, microorganism

 

总页码:

 19    

参考文献:

[1] Asano T. Water from (waste)water - the dependable water resource[J]. Water Science and Technology. 2002, 45(8): 24-33.

[2] Yates M V, Gerba C P, Kelley L M. Virus persistence in groundwater [J]. Applied and Environmental Microbiology, 1985, 49(4): 778-781.

[3] You Y W, Han J, Chiu P C, et al. Removal and inactivation of waterhorne viruses using zerovalent iron[J]. Environmental Science & Technology. 2005, 39(23): 9263-9269.

[4] Ryan J N, Harvey R W, Metge D, et al. Field and laboratory investigations of inactivation of viruses (PRD1 and MS2) attached to iron oxide-coated quartz sand[J]. Environmental Science & Technology. 2002, 36(11): 2403-2413.

[5] Simmons F J, Kuo D H W, Xagoraraki I. Removal of human enteric viruses by a full-scale membrane bioreactor during municipal wastewater processing[J]. Water Research. 2011, 45(9): 2739-2750.

[6] Parashar U D, Gibson C J, Bresee J S, et al. Rotavirus and severe childhood diarrhea[J]. Emerging Infectious Diseases. 2006, 12(2): 304-306.

[7] 郭仁友,赵文彬,李永明,等. 水厂源水与出厂水肠道病毒污染状况研究[J]. 江苏预防医学. 1997(02): 6-7.

[8] Schlindwein A D, Rigotto C, Simoes C M O, et al. Detection of enteric viruses in sewage sludge and treated wastewater effluent[J]. Water Science and Technology. 2010, 61(2): 537-544.

[9] He X Q, Cheng L, Zhang D Y, et al. First Molecular Detection of Group A Rotaviruses in Drinking Water Sources in Beijing, China[J]. Bulletin of Environmental Contamination and Toxicology. 2009, 83(1): 120-124.

[10] Hrudey S E. Chlorination disinfection by-products, public health risk tradeoffs and me[J]. Water Research. 2009, 43(8): 2057-2092.

[11] Auffan M, Achouak W, Rose J, et al. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli[J]. Environmental Science & Technology. 2008, 42(17): 6730-6735.

[12] Diao M, Yao M. Use of zero-valent iron nanoparticles in inactivating microbes[J]. Water Research. 2009, 43(20): 5243-5251.

[13] You Y W, Han J, Chiu P C, et al. Removal and inactivation of waterhorne viruses using zerovalent iron[J]. Environmental Science & Technology. 2005, 39(23): 9263-9269.

[14] Cheng R, Li G, Cheng C, et al. Removal of bacteriophage f2 in water by nanoscale zero-valent iron and parameters optimization using response surface methodology[J]. Chemical Engineering Journal. 2014, 252: 150-158.

[15] Zhang W X, Wang C B, Lien H L. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles[J]. Catalysis Today. 1998, 40(4): 387-395.

[16] Mallát T, Bodnár Z, Petró J. Reduction by dissolving bimetals[J]. Tetrahedron. 1991, 47(3): 441-446.

[17] Tee Y H, Grulke E, Bhattacharyya D. Role of Ni/Fe nanoparticle composition on the degradation of trichloroethylene from water[J]. Industrial & Engineering Chemistry Research. 2005, 44(18): 7062-7070.

[18] 黄园英,刘菲,汤鸣臬,等. 纳米镍/铁和铜/铁双金属对四氯乙烯脱氯研究[J]. 环境科学学报. 2007(01): 80-85.

[19] Glavee G N. Chemistry of Borohydride Reduction of Iron(II) and Iron(III) Ions in Aqueous and Nonaqueous Media. Formation of Nanoscale Fe, FeB, and Fe2B Powders[J]. Inorganic Chemistry. 1995, 34(1): 28-35.

[20] Bokare A D, Chikate R C, Rode C V, et al. Effect of Surface Chemistry of Fe?Ni Nanoparticles on Mechanistic Pathways of Azo Dye Degradation[J]. Environmental Science & Technology. 2007, 41(21): 7437-7443.

[21] Kim J Y, Lee C, Love D C, et al. Inactivation of MS2 Coliphage by Ferrous Ion and Zero-Valent Iron Nanoparticles[J]. Environmental Science & Technology. 2011, 45(16): 6978-6984.

[22] Zecevic S, Drazic D M, Gojkovic S. Oxygen Reduction on Iron .4. The Reduction of Hydrogen-peroxide as The Intermediate in Oxygen Reduction Reaction in Alkaline-solutions [J]. Electrochimica Acta. 1991, 36(1): 5-14.

[23] Kim J Y, Lee C, Sedlak D L, et al. Inactivation of MS2 coliphage by Fenton's reagent [J]. Water Research. 2010, 44(8): 2647-2653.

[24] 刘菲,黄园英,张国臣. 纳米镍/铁去除氯代烃影响因素的探讨[J]. 地学前缘. 2006(01): 150-154.

[25] 李灿权,张雪峰,王威娜,等. 铁、镍及其合金纳米粒子的制备及电磁性能研究[J]. 材料工程. 2006(02): 46-50.

[26] 袁明亮,陶加华,余亮,等. 纳米铁-镍合金颗粒的制备及表征[J]. 过程工程学报. 2011(01): 158-161.

[27] Kim J Y, Park H, Lee C, et al. Inactivation of Escherichia coli by Nanoparticulate Zerovalent Iron and Ferrous Ion[J]. Applied and Environmental Microbiology. 2010, 76(22): 7668-7670.

[28] Lee C, Kim J Y, Lee W I, et al. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli [J]. Environmental Science & Echnology. 2008, 42(13): 4927-4933.

[29] Keenan C R, Sedlak D L. Factors affecting the yield of oxidants from the reaction of manoparticulate zero-valent iron and oxygen [J]. Environmental Science & Technology. 2008, 42(4): 1262-1267.

[30] Lee C, Keenan C R, Sedlak D L. Polyoxometalate-enhanced oxidation of organic compounds by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen[J]. Environmental Science & Technology. 2008, 42(13): 4921-4926.

[31] Nieto-Juarez J I, Pierzchla K, Sienkiewicz A, et al. Inactivation of MS2 coliphage in Fenton and Fenton-like systems: role of transition metals, hydrogen peroxide and sunlight[J]. Environmental Science & Technology. 2010, 44(9): 3351-3356.

开放日期:

 2016-05-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式