- 无标题文档
查看论文信息

中文题名:

 智慧城市试点政策能否降低城市内涝风险?——基于2007-2019年180个地级城市的渐进双重差分法实证分析    

姓名:

 顾扬洋    

学科名称:

 管理学 - 公共管理类 - 行政管理    

学生类型:

 学士    

学位名称:

 管理学学士    

学校:

 中国人民大学    

院系:

 公共管理学院    

专业:

 行政管理    

第一导师姓名:

 龚芳颖    

完成日期:

 2025-04-25    

提交日期:

 2025-06-05    

中文关键词:

 智慧城市 ; 政策试点 ; 城市暴雨内涝 ; 风险评估 ; 渐进双重差分    

外文关键词:

 Smart city ; Policy Pilot ; Urban Rainstorm Waterlogging ; Risk Assessment ; Staggered Difference-in-Differences    

中文摘要:

在城市气候风险加剧的背景下,城市内涝灾害带来了严重的社会经济损失,提升城市韧性以保障城市系统应对各种内外部风险冲击的能力是城市建设领域的重要议题之一。作为新型的城市治理模式,智慧城市建设旨在通过智能化、数字化技术解决快速城市化带来的资源紧张、管理低效、环境污染等问题,推动城市的可持续发展。然而,在政策实施的过程中,城市的智慧化建设是否可以降低城市系统的暴雨内涝风险值?本研究基于多源大数据对全国180个地级市进行分析评估,运用遥感影像分析、主成分分析、ArcGIS空间叠加分析等方法,基于联合国气候变化专门委员会(IPCC)提出的基于气候风险评估的适应决策框架,即“危害性-暴露度-脆弱性-适应性”框架,以评估这些城市的暴雨内涝风险指数。结果发现,全国暴雨内涝风险呈现出显著的海陆梯度效应,并且随时间变化,内涝风险值呈现显著的下降趋势。而后,本研究选取三期智慧城市建设试点的2007-2019年180个地级城市的面板数据,利用渐进双重差分方法评估了智慧城市建设对城市内涝韧性的影响。实证发现:(1)相比非试点城市,智慧城市试点政策实施显著降低了试点城市的内涝风险,且该结论在事件分析法、排除同期政策干扰、安慰剂检验等多项稳健性检验后依然成立。(2)通过异质性分析可得:随着湿润程度增加,智慧城市试点政策降低城市暴雨内涝风险值的政策效果逐渐减弱;人口规模较大的城市政策效应较弱;非省会城市的政策效果显著优于省会城市。最后,本文提出了城市应对暴雨内涝风险的气候适应性规划治理的政策建议,以期提升我国的城市建设水平。

外文摘要:

Against the backdrop of intensifying urban climate risks, flooding disasters have incurred substantial socioeconomic losses. Enhancing urban resilience to strengthen cities' capacity in coping with diverse shocks has emerged as a vital issue in urban development. Smart city initiatives employ intelligent and digital technologies to address challenges stemming from rapid urbanization. However, in the process of policy implementation, can the smart city development reduce the urban system's risk of rainstorm waterlogging? This study conducts a comprehensive evaluation of 180 prefecture-level cities across China using multi-source big data, incorporating methodologies such as remote sensing image analysis, principal component analysis, and ArcGIS spatial overlay techniques. Grounded in the IPCC's climate risk assessment framework - the "Hazard-Exposure-Vulnerability- Adaptive Capacity" paradigm - we develop a pluvial flooding risk index. Our findings reveal a distinct coastal-inland gradient in nationwide flooding risks, with a statistically significant declining trend observed temporally. Utilizing panel data from three batches of smart city pilot programs (2007-2019) and employing a staggered difference-in-differences approach, we assess the policy impact on urban flooding resilience. Empirical results demonstrate that: (1) smart city implementation significantly reduces flooding risks in treatment cities compared to non-pilot cities, with robustness confirmed through event studies, concurrent policy exclusion tests, and placebo examinations; (2) Heterogeneity analysis indicates diminishing policy effectiveness along increasing humidity gradients, weaker impacts in larger cities, and superior performance in non-provincial capitals versus provincial capitals. The study concludes with evidence-based recommendations for climate-adaptive urban governance strategies to mitigate pluvial flooding risks, providing valuable insights for urban development policy optimization in China.

论文分类号:

 C939    

总页码:

 56    

参考文献:

[1]Alfieri, L., Bisselink, B., Dottori, F., Naumann, G., de Roo, A., Salamon, P., ... & Feyen, L. Global projections of river flood risk in a warmer world [J]. Earth's Future, 2017, 5(2):171-182.

[2]Apel, H., Merz, B., Thieken, A.H. Quantification of uncertainties in flood risk assessments [J]. Int. J. River Basin Manag. 2008,6 (2):149-162.

[3]Du, M., Zhang, X., Wang, Y., Tao, L., & Li, H. An operationalizing model for measuring urban resilience on land expansion [J]. Habitat International, 2020,102:102206.

[4]Du, W., Gong, Y., & Chen, N. PSO-WELLSVM: An integrated method and its application in urban waterlogging susceptibility assessment in the central Wuhan, China [J]. Computers & Geosciences, 2022,161:105079.

[5]Duan, C., Zhang, J., Chen, Y., Lang, Q., Zhang, Y., Wu, C., & Zhang, Z. Comprehensive risk assessment of urban waterlogging disaster based on MCDA-GIS integration: The case study of Changchun, China [J]. Remote Sensing, 2022,14(13):3101.

[6]Esteban, T. A. O., & Edelenbos, J. The politics of urban flood resilience: The case of Malabon city [J]. International Journal of Disaster Risk Reduction, 2023,88:103604.

[7]Fu, L., Yang, X., Zhang, D., & Cao, Y. Assessment of climate-resilient city pilots in China [J]. Chinese Journal of Urban and Environmental Studies, 2021,9(01):2150005.

[8]Giffinger, R., & Gudrun, H. Smart cities ranking: an effective instrument for the positioning of the cities? [J]. ACE: architecture, city and environment, 2010,4(12):7-26.

[9]Gilroy K L, Mccuen R H. A nonstationary flood frequency analysis method to adjust for future climate change and urbanization [J]. Journal of Hydrology, 2012,414:40-48.

[10]Harrison, C., Eckman, B., Hamilton, R., Hartswick, P., Kalagnanam, J., Paraszczak, J., & Williams, P. Foundations for smarter cities [J]. IBM Journal of research and development, 2010,54(4):1-16.

[11]Hou, X., Guo, H., Wang, F., Li, M., Xue, X., Liu, X., & Zeng, S. Is the sponge city construction sufficiently adaptable for the future stormwater management under climate change? [J]. Journal of Hydrology, 2020,588:125055.

[12]IPCC. Climate change: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects [R]. Cambridge: Cambridge University Press, 2014.

[13]IPCC. Climate change: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of working group II to the Fifth assessment report of the intergovernmental panel on climate change [M]. Cambridge, UK: Cambridge University Press, 2014.

[14]IPCC. Managing the Risks of Extreme Events and Disasters to advance Climate Change Adaptation (SREX). A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change [M]. Cambridge University Press, Cambridge, UK, and New York, NY, USA, 2012:p. 582.

[15]IPCC. The concept of risk in the IPCC Sixth Assessment Report: a summary of cross-Working Group discussions[R]. Geneva: IPCC, 2020.

[16]Jonkman, S.N., van Gelder, P.H.A.J.M., Vrijling, J.K. An overview of quantitative risk measures for loss of life and economic damage [J]. J. Hazard Mater. 2003,99 (1):1-30.

[17]Jovanovic T, Mejia A, Gall H, et al. Effect of urbanization on the long-term persistence of streamflow records [J]. Physica A: Statistical Mechanics & Its Applications, 2016,447(4):208-221.

[18]Kang, K. E., Bowman, A. O. M., Hannibal, B., Woodruff, S., & Portney, K. Ecological, engineering and community resilience policy adoption in large US cities [J]. Urban Affairs Review, 2023,59(6):1973-2004.

[19]Lan, H., Yang, Y., Fu, H., Liao, H., Liao, L., Huang, S., & Li, X. Dynamic disaster risk assessment of urban waterlogging on pedestrian flow by intelligent simulation of hydrodynamics coupled with agent-based models in Chao-yang river basin of Nanning, China [J]. Stochastic Environmental Research and Risk Assessment, 2024,38(10):3851-3874.

[20]Liang, P., Xu, W., Ma, Y., Zhao, X., & Qin, L. Increase of elderly population in the rainstorm hazard areas of China [J]. International journal of environmental research and public health, 2017,14(9):963.

[21]Liu, Y., Zhao, W., Wei, Y., Sebastian, F. S. M., & Wang, M. Urban waterlogging control: A novel method to urban drainage pipes reconstruction, systematic and automated [J]. Journal of Cleaner Production, 2023,418:137950.

[22]Mair, M., Zischg, J., Rauch, W., & Sitzenfrei, R. Where to find water pipes and sewers?—On the correlation of infrastructure networks in the urban environment [J]. Water, 2017,9(2):146.

[23]McClymont, K., Cunha, D. G. F., Maidment, C., Ashagre, B., Vasconcelos, A. F., de Macedo, M. B., ... Imani, M. Towards urban resilience through sustainable drainage systems: A multi-objective optimisation problem [J]. Journal of Environmental Management, 2020,275: Article 111173.

[24]Miller, J. D., & Hutchins, M. The impacts of urbanization and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom [J]. Journal of Hydrology: Regional Studies, 2017,12:345-362.

[25]Moritz H, White K, Gouldby B. An updated USACE approach to the evaluation of coastal total water levels for present and future flood risk analysis [J]. E3S Web of Conferences, 2016,7:01012.

[26]Mruksirisuk, P., Thanvisitthpon, N., Pholkern, K., Garshasbi, D., & Saguansap, P. Flood vulnerability assessment of Thailand's flood-prone Pathum Thani province and vulnerability mitigation strategies [J]. Journal of Environmental Management, 2023,347:119276.

[27]Muis S, Güneralp B, Jongman B, et al. Flood risk and adaptation strategies under climate change and urban expansion: A probabilistic analysis using global data [J]. Science of the Total Environment, 2015,538:445-454.

[28]Reid, C. E., O'Neill, M. S., Gronlund, C. J., Brines, S. J., Brown, D. G., Diez-Roux, A. V., & Schwartz, J. Mapping community determinants of heat vulnerability [J]. Environmental health perspectives, 2009,117(11):1730-1736.

[29]Sahu, A. S. A Study on Moyna Basin Water‐Logged Areas (India) Using Remote Sensing and GIS Methods and Their Contemporary Economic Significance [J]. Geography Journal, 2014,2014(1):401324.

[30]Slater L J, Villarini G. Recent trends in U.S. flood risk [J]. Geophysical Research Letters, 2016,43(24):12428-12436.

[31]Su, M., Zheng, Y., Hao, Y., Chen, Q., Chen, S., Chen, Z., & Xie, H. The influence of landscape pattern on the risk of urban water-logging and flood disaster [J]. Ecological Indicators, 2018,92:133-140.

[32]Subrina, S., & Chowdhury, F. K. Urban Dynamics: An undervalued issue for water logging disaster risk management in case of Dhaka city, Bangladesh [J]. Procedia engineering, 2018,212:801-808.

[33]Wang, D., & Chen, S. The effect of pilot climate-resilient city policies on urban climate resilience: Evidence from quasi-natural experiments [J]. Cities, 2024,153:105316.

[34]Wang, Y., Zhang, Q., Lin, K., Liu, Z., Liang, Y. S., Liu, Y., & Li, C. A novel framework for urban flood risk assessment: Multiple perspectives and causal analysis [J]. Water Research, 2024,256:121591.

[35]Wu, Z., Shen, Y., Wang, H., & Wu, M. Urban flood disaster risk evaluation based on ontology and Bayesian Network [J]. Journal of Hydrology, 2020,583:124596.

[36]Xia, J., Zhang, Y., Xiong, L., He, S., Wang, L., & Yu, Z. Opportunities and challenges of the Sponge City construction related to urban water issues in China [J]. Science China Earth Sciences, 2017,60:652-658.

[37]Xiao, S., Zou, L., Xia, J., Dong, Y., Yang, Z., & Yao, T. Assessment of the urban waterlogging resilience and identification of its driving factors: A case study of Wuhan City, China [J]. Science of the total environment, 2023,866:161321.

[38]Xu C. The fundamental institutions of China's reforms and development[J]. Journal of economic literature, 2011, 49(4): 1076-1151.

[39]YU S, KONG X, WANG Q, et al. 2023. A new approach of Robustness-Resistance-Recovery (3Rs) to assessing flood resilience: A case study in Dongting Lake Basin. Landscape and Urban Planning [J], 230.

[40]Zhang, Q., Wu, Z., Zhang, H., Dalla Fontana, G., & Tarolli, P. Identifying dominant factors of waterlogging events in metropolitan coastal cities: The case study of Guangzhou, China [J]. Journal of Environmental Management, 2020,271:110951.

[41]Zheng S, Li Z. Pilot governance and the rise of China's innovation[J]. China Economic Review, 2020, 63: 101521.

[42]Zhou, Q., Zhu, M., Qiao, Y., Zhang, X., & Chen, J. Achieving resilience through smart cities? Evidence from China [J]. Habitat International, 2021,111:102348.

[43]Zhu, S., Li, D., & Feng, H. Is smart city resilient? Evidence from China [J]. Sustainable Cities and Society, 2019,50:101636.

[44]陈赤平&卞安雯.智慧城市建设能否提升居民幸福感——基于中国健康与养老追踪调查数据的实证分析[J].湖南师范大学社会科学学报,2023,52(04):86-95.

[45]陈倩云,余弘婧,高学睿,安婷莉,王玉宝&孙淼.当前我国城市内涝问题归因分析与应对策略[J].华北水利水电大学学报(自然科学版),2019,40(01):55-63.

[46]陈长坤,陈以琴,施波&徐童.雨洪灾害情境下城市韧性评估模型[J].中国安全科学学报,2018,28(04):1-6.

[47]储震&程名望.智慧城市建设和环境污染改善——微观证据与影响机制[J].经济科学,2023,(06):66-85.

[48]楚尔鸣,孙红果&李逸飞.智慧城市建设对生态环境韧性的影响研究[J].管理学刊,2023,36(06):21-37.

[49]崔立志&陈秋尧.智慧城市渐进式扩容政策的环境效应研究[J].上海经济研究,2019,(04):62-74.

[50]辜胜阻&王敏.智慧城市建设的理论思考与战略选择[J].中国人口・资源与环境,2012,22(05):74-80.

[51]郝天文&孔彦鸿.城市排水系统的困局与重构[J].城市规划,2019,43(08):103-107.

[52]何凌云&马青山.智慧城市试点能否提升城市创新水平?——基于多期DID的经验证据[J].财贸研究,2021,32(03):28-40.

[53]何凌云&马青山.智慧城市试点能否提升城市创新水平?——基于多期DID的经验证据[J].财贸研究,2021,32(03):28-40.

[54]何凌云,马青山&张元梦.智慧城市试点对吸引FDI的影响——来自准自然实验的证据[J].国际商务(对外经济贸易大学学报),2021,(06):69-84.

[55]何珮婷,刘丹媛,卢思言,何小钰,李桦,杨柳&林锦耀.基于最大熵模型的深圳市内涝影响因素分析及内涝风险评估[J].地理科学进展,2022,41(10):1868-1881.

[56]黄华兵,王先伟&柳林.城市暴雨内涝综述:特征、机理、数据与方法[J].地理科学进展,2021,40(06):1048-1059.

[57]蒋硕亮&陈贤胜.洪涝情景下城市韧性评估及障碍因素分析[J].统计与决策,2022,38(24):63-67.

[58]焦柳丹,唐莲,霍小森,等.基于投影寻踪的城市内涝灾害韧性评估研究[J].重庆交通大学学报(自然科学版),2023,42(11):72-79.

[59]李春佳.智慧城市内涵、特征与发展途径研究——以北京智慧城市建设为例[J].现代城市研究,2015,(05):79-83.

[60]李海宏&吴吉东.2007—2016年上海市暴雨特征及其与内涝灾情关系分析[J].自然资源学报,2018,33(12):2136-2148.

[61]李正兆,傅大放,王君娴,闵克东&张骏彧.应对内涝灾害的城市韧性评估模型及应用[J].清华大学学报(自然科学版),2022,62(02):266-276.

[62]李智超.政策试点推广的多重逻辑——基于我国智慧城市试点的分析[J].公共管理学报,2019,16(03):145-156+175.

[63]李重照&刘淑华.智慧城市:中国城市治理的新趋向[J].电子政务,2011,(06):13-18.

[64]刘成杰,胡钰苓,李虹桥&张娜.中国智慧城市试点政策对城市发展质量的影响——基于韧性发展的视角[J].城市问题,2021,(11):79-89.

[65]刘勇,张韶月,柳林,王先伟&黄华兵.智慧城市视角下城市洪涝模拟研究综述[J].地理科学进展,2015,34(04):494-504.

[66]柳杨,范子武,谢忱,刘国庆&费香波.城镇化背景下我国城市洪涝灾害演变特征[J].水利水运工程学报,2018,(02):10-18.doi:10.16198/j.cnki.1009-640X.2018.02.002.

[67]罗玉莹.基于多属性决策分析的城市内涝灾害抗逆力评价研究[D].南京:南京大学,2019.

[68]马震.智慧城市建设对经济高质量发展的影响研究——基于城市韧性视角的分析[J].华东经济管理,2024,38(03):47-57.doi:10.19629/j.cnki.34-1014/f.230909015.

[69]缪驰远,韩静雅,苟娇娇.中国逐日降水数据集(1961-2022,0.1°/0.25°/0.5°)[DB/OL].国家青藏高原数据中心(https://data.tpdc.ac.cn/home).2023.

[70]彭守璋.中国1km逐年干燥度数据集(1901-2023)[DB/OL].国家青藏高原数据中心(https://data.tpdc.ac.cn/home),2023.

[71]石大千,丁海,卫平&刘建江.智慧城市建设能否降低环境污染[J].中国工业经济,2018,(06):117-135.

[72]石大千,李格&刘建江.信息化冲击、交易成本与企业TFP——基于国家智慧城市建设的自然实验[J].财贸经济,2020,41(03):117-130.

[73]石铁矛&卜英杰.多尺度绿地景观格局对滞蓄能力的影响研究[J].风景园林,2021,28(03):88-94.doi:10.14085/j.fjyl.2021.03.0088.07.

[74]唐斯斯,张延强,单志广,王威&张雅琪.我国新型智慧城市发展现状、形势与政策建议[J].电子政务,2020,4:70-80.

[75]滕五晓,夏剑霺&万蓓蕾.城市社区暴雨脆弱性评估研究——以上海市杨浦区为例[J].广州大学学报(社会科学版),2018,17(02):20-26+60.

[76]王成坤,黄纪萍,曾胜,叶淦升&林春生.基于积水特征和暴露脆弱性的城市内涝风险评估[J].中国给水排水,2019,35(05):125-130.

[77]王峤,李含嫣&臧鑫宇.应对暴雨内涝的城市建成环境韧性等级区划研究——以天津市中心城区为例[J].建筑学报,2022,(S2):201-207.

[78]武永超.智慧城市建设能够提升城市韧性吗?——一项准自然实验[J].公共行政评论,2021,14(04):25-44+196.

[79]杨杰.中国30米年度土地覆盖数据集及其动态变化(1985-2022年)[DB/OL].国家冰川冻土沙漠科学数据中心(http://www.ncdc.ac.cn),2023.

[80]杨凯,刘丁蓉&孙仕.城市智慧治理模式能否促进城市内涝灾害韧性提升?——基于国家智慧城市试点政策的准自然实验[J].南京财经大学学报,2024,(06):23-33+77.

[81]杨凯,刘丁蓉,孙仕.城市智慧治理模式能否促进城市内涝灾害韧性提升?——基于国家智慧城市试点政策的准自然实验[J].南京财经大学学报,2024,(06):23-33+77.

[82]杨若子,邢佩,杜吴鹏,轩春怡,党冰,熊飞麟&白孟鑫.面向气候韧性社区建设的北京东四社区暴雨内涝灾害风险研究[J].灾害学,2024,39(03):24-29+53.

[83]姚蕊,杨群涛&张书亮.城市暴雨内涝灾害脆弱性研究综述[J].水资源保护,2023,39(01):93-100.

[84]姚圣文,张耀坤&赵兰香.智慧城市试点政策能否助推城市创新水平提升?——基于多时点DID的实证研究[J].科学学与科学技术管理,2022,43(05):85-99.

[85]尹丽英&张超.中国智慧城市理论研究综述与实践进展[J].电子政务,2019,(01):111-121.

[86]袁航&朱承亮.智慧城市是否加速了城市创新?[J].中国软科学,2020,(12):75-83.

[87]张传勇,蔡琪梦&杨力.智慧城市建设与居民幸福感:基于CLDS数据的实证分析[J].社会科学,2023,(01):128-140.

[88]张冬冬,严登华,王义成,鲁帆&刘少华.城市内涝灾害风险评估及综合应对研究进展[J].灾害学,2014,29(01):144-149.

[89]张立贤,任浙豪,陈斌,宫鹏,付昊桓,徐冰.中国长时间序列逐年人造夜间灯光数据集(1984-2020)[DB/OL].国家青藏高原数据中心(https://data.tpdc.ac.cn/home).2021.

[90]赵蔡晶&吴柏钧.智慧城市建设促进了城市发展质量提升吗?——基于多期DID方法的政策效应评估[J].经济经纬,2020,37(06):18-27.

[91]赵超辉,万金红,张云霞&张葆蔚.城市内涝特征、成因及应对研究综述[J].灾害学,2023,38(01):220-228.

[92]赵凯旭,王建明,闫茜&黄晓军.西安市老城区暴雨内涝模拟及其灾害风险评估[J].自然灾害学报,2023,32(04):1-12.

[93]郑艳,翟建青,武占云,李莹&史巍娜.基于适应性周期的韧性城市分类评价——以我国海绵城市与气候适应型城市试点为例[J].中国人口・资源与环境,2018,28(03):31-38.

[94]种照辉,位晓琳&覃成林.智慧城市试点政策如何影响区域协同创新[J].公共管理与政策评论,2024,13(05):26-45.

[95]周宏,刘俊,高成&欧淑芳.我国城市内涝防治现状及问题分析[J].灾害学,2018,33(03):147-151.

开放日期:

 2025-06-09    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式