- 无标题文档
查看论文信息

中文题名:

 贝叶斯资产组合选择:基于沪深300指数的实证分析    

姓名:

 徐硕    

学科名称:

 经济学 - 金融学类 - 金融工程    

学生类型:

 学士    

学位名称:

 经济学学士    

学校:

 中国人民大学    

院系:

 财政金融学院    

专业:

 金融工程    

第一导师姓名:

 汪昌云    

完成日期:

 2020-05-22    

提交日期:

 2020-06-08    

奖项名称:

 中国人民大学优秀本科毕业论文一等奖    

颁奖单位:

 中国人民大学    

获奖时间:

 2020    

中文关键词:

 贝叶斯方法 ; 资产组合选择 ; 沪深300指数 ; 参数估计    

中文摘要:

马科维茨的投资组合理论是现代金融学的基础之一,在投资组合理论之中对于期望收益及其方差-协方差矩阵的估计将直接影响资产组合选择的有效性。为了改善资产组合的表现,在历史数据的基础上,本文将采用贝叶斯方法将参数不确定性以及投资者的先验观点纳入参数估计之中。参考前人研究,本文给出了先验期望收益及其方差-协方差矩阵的估计方法。随后研究了无信息先验分布及有信息先验分布的一种特殊情况——共轭先验分布下,最小方差组合及最大夏普比率组合这两种有效边界上最具有代表性的资产组合的表现情况。

    本文以沪深300指数成分股为资产池计算了2008年至2019年中各资产组合的收益情况。有信息先验分布下两种贝叶斯资产组合年化收益分别提高了8.1%、6.6%,证明在中国A股市场上,贝叶斯方法能够有效的减小参数估计误差对资产组合的影响。

外文摘要:

Markowitz's portfolio theory is one of the foundations of modern finance, in which the estimation of expected return and its variance-covariance matrix will directly affect the effectiveness of portfolio selection. In order to improve the performance of the portfolio, based on the historical data, this paper adopts Bayesian method to incorporate the parameter uncertainty and investors' prior views into the parameter estimation. Based on the previous research, this paper gives the general method of estimate the prior expected return and its variance-covariance matrix. Then under the condition of non-informative prior distribution and informative prior distribution, we study the performance of the two most representative asset portfolios on the effective boundary, the least variance portfolio and the maximum Sharpe ratio portfolio.

Using the CSI 300 index constituent stocks as asset pool, this paper calculates the returns of each portfolio from 2008 to 2019. Under the condition of conjugate prior distribution, the annualized returns of the two Bayesian portfolios increased by 8.1% and 6.6% respectively, proving that the Bayesian method can effectively reduce the impact of parameter estimation error on the portfolio in the Chinese A-share stock market.

总页码:

 31    

参考文献:

[1] 胡素华. 连续时间资产收益模型的贝叶斯分析[D].天津大学,2006.

[2] 郜元兴.上证180指数的贝叶斯估计[J].统计教育,2006(11):11-13.

[3] 杨朝军,陈浩武.参数不确定性对投资者最优资产组合的影响:基于中国的实证[J].中国管理科学,2008(03):37-43.

[4] 袁子甲,李仲飞.基于贝叶斯方法的均值-方差投资组合选择[J].现代管理科学,2009(05):20-21.

[5] 梁崴,王春峰,房振明,张蕊.基于贝叶斯方法的积极资产组合决策模型研究[J].管理学报,2009,6(10):1313-1318.

[6] 刘忠元. 基于贝叶斯理论的投资组合模型研究[D].武汉理工大学,2009.

[7] 蔡伟宏. 基于非参数贝叶斯方法的资产配置[D].华中科技大学,2012.

[8] 郭曼. 基于贝叶斯方法投资组合选择问题的研究[D].东北大学,2014.

[9] 赵大萍,张超梁,房勇.基于贝叶斯理论的长、短数据资产组合选择[J].中国管理科学,2015,23(S1):504-509.

[10] 茹诗松,汤银才.贝叶斯统计(第二版)[M].北京:中国统计出版社,2012.

[11] Black F, Litterman R. Global portfolio optimization[J]. Financial analysts journal, 1992, 48(5): 28-43.

[12] Brown S. The effect of estimation risk on capital market equilibrium[J]. Journal of Financial and Quantitative Analysis, 1979, 14(2): 215-220.

[13] Chopra V K, Ziemba W T. The effect of errors in means, variances, and covariances on optimal portfolio choice[M]//Handbook of the Fundamentals of Financial Decision Making: Part I. 2013: 365-373.

[14] Dumas B, Jacquillant. B. Performance of currency portfolios chosen by a Bayesian technique: 1967–1985[J]. Journal of Banking & Finance, 1990, 14(2-3): 539-558.

[15] Frost P A, Savarino J E. An empirical Bayes approach to efficient portfolio selection[J]. Journal of Financial and Quantitative Analysis, 1986, 21(3): 293-305.

[16] Jobson J D, Korkie B. Estimation for Markowitz efficient portfolios[J]. Journal of the American Statistical Association, 1980, 75(371): 544-554.

[17] Jorion P. Bayes-Stein estimation for portfolio analysis[J]. Journal of Financial and Quantitative analysis, 1986, 21(3): 279-292.

[18] Klein R W, Bawa V S. The effect of estimation risk on optimal portfolio choice[J]. Journal of financial economics, 1976, 3(3): 215-231.

[19] Markowitz H. Portfolio selection: Efficient diversification of investments[M]. New York: John Wiley, 1959.

[20] Merton R C. On estimating the expected return on the market: An exploratory investigation[R]. National Bureau of Economic Research, 1980.

[21] Polson N G, Tew B V. Bayesian portfolio selection: An empirical analysis of the S&P 500 index 1970–1996[J]. Journal of Business & Economic Statistics, 2000, 18(2): 164-173.

[22] Zellner A, Chetty V K. Prediction and decision problems in regression models from the Bayesian point of view[J]. Journal of the American Statistical Association, 1965, 60(310): 608-616.

开放日期:

 2020-06-09    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式