- 无标题文档
查看论文信息

中文题名:

 钾离子水合物的扫描探针显微成像及机器学习的应用探究    

姓名:

 刘心萌    

学科名称:

 工学 - 材料类 - 材料物理    

学生类型:

 学士    

学位名称:

 理学学士    

学校:

 中国人民大学    

院系:

 理学院物理系    

专业:

 材料物理    

第一导师姓名:

 江颖    

完成日期:

 2020-05-20    

提交日期:

 2020-05-20    

奖项名称:

 中国人民大学优秀本科毕业论文一等奖    

颁奖单位:

 中国人民大学    

获奖时间:

 2020    

中文关键词:

 二维材料 钾离子水合层 扫描探针显微镜 机器学习 卷积神经网络 图像分类    

外文关键词:

 Two-dimensional Material ; Potassium Ion Hydrates ; Scanning Probe Microscope ; Machine Learning ; Convolutional Neural Network ; Image Classification    

中文摘要:

金属表面二维离子水合层的微观结构和动力学性质研究,有助于理解电化学界面的双电层结构及其对反应效率的影响。本论文在课题组的钠离子水合团簇研究的基础上,将实验延伸到二维钾离子水合层的生长制备和结构表征,以期发现离子浓度的变化对二维钾离子水合层的结构和物性产生的影响。实验利用高分辨率的扫描隧道显微镜和qPlus型原子力显微镜观测到二维钾离子水合层的不同相,而且这些相的出现与水和钾的配比相关。通过与理论计算的模拟图像的比对分析获得了二维钾离子水合层的原子结构。

准确判断二维离子水合层晶胞结构中的原子或分子种类,以及对扫描探针显微镜针尖的质量好坏进行自动化判断和修复,是课题组在二维离子水合层表征分析中的两大需求。本论文利用机器学习方法和TensorFlow 神经网络库,针对二维钾离子水合层的结构和扫描探针的针尖状态两类问题分别设计了具有不同网络层结构的卷积神经网络模型。通过尝试多种机器学习的优化方法以及对网络模型层结构和参数的持续调试,在二维钾离子水合层的结构分类问题和扫描探针针尖状态的识别问题上均达到了100%的准确率。本论文的工作为进一步研究三维离子水合层以及未来实现扫描自动化控制和识别做出了初步的尝试。

外文摘要:

The study of the microstructure and kinetic properties of two-dimensional (2D) ion hydrates on metal surface is helpful for understanding the double layer structure of the electrochemical interface and its effect on the reaction efficiency. Based on previous research work on 2D sodium ion hydrated clusters, this thesis extends the investigation to the growth and characterization of 2D potassium ion hydrates and aims to find out how different hydration numbers influence the structure and physical properties of 2D potassium hydrates. In this study, different phases of 2D potassium hydrates are observed by using STM and qPlus AFM. The different phases are found to be related to the water to potassium ratio. The actual structures of different phases of 2D potassium hydrates are identified by compared with the simulated results.

Accurate determination of the atom or molecule types in the 2D ion hydrate crystal cell structure and automatic detection of SPM tip quality are two major requirements of our research group in 2D ion hydrates characterization. In this study, Convolutional Neural Networks are created by using the TensorFlow libraries. Training models with different numbers of layers are designed for 2D potassium hydrates structure classification and probe tip status recognition, respectively. With various optimization methods and longtime tuning of the network parameters, the accuracies of both structure classification and probe tip status recognition reach 100% finally. This work can be seen as a preliminary step for further exploration on 3D ion hydrates structure recognition and for realization of SPM scan automation.

总页码:

 37    

参考文献:

[1] K. S. Novoselov, A. K. Geim. el ta. Electric field effect in atomically thin carbon films. Science (2004) 306,5696: 666-669.

[2] M. Chaplin. Do we underestimate the importance of water in cell biology? Nat. Rev. Mol. Cell Biol. (2006) 7, 861–866.

[3] K. W. Koster, A. Raidt, V. Fuentes Landete, C. Gainaru, T. Loerting, & R. Bohmer. Dopingenhanced dipolar dynamics in ice V as a precursor of hydrogen ordering in ice XIII. Phys. Rev. B (2016) 94, 184306.

[4] J. Bridgeman. Water: An International and Interdisciplinary Scientific Open Access Journal. Water (2009) 1, 1-2.

[5] A. W. Omta, M. F. Kropman, S. Woutersen & H. J. Bakker. Negligible effect of ions on the hydrogen-bond structure in liquid water. Science (2003) 301(5631), 347-349.

[6] A. Salis & B. W. Ninham. Models and mechanisms of Hofmeister effects in electrolyte solutions, and colloid and protein systems revisited. Chem. Soc. Rev. (2014) 43, 7358.

[7] P. B. Petersen & R. J. Saykally. On the nature of ions at the liquid water surface. Ann. Rev. Phys. Chem. (2006) 57, 333-364.

[8] Y. Marcus. Effect of ions on the structure of water: structure making and breaking. Chem. Rev. (2009) 109, 1346-1370.

[9] J. Peng, D. Cao, Z. He. et al. The effect of hydration number on the interfacial transport of sodium ions. Nature (2018) 557, 701–705.

[10] R. B. Schoch, J. Han, & P. Renaud. Transport phenomena in nanofluidics. Rev. Mod. Phys. (2008) 80, 839–883.

[11] W. Guo, Y. Tian & L. Jiang. Asymmetric ion transport through ion-channelmimetic solid-state nanopores. Acc. Chem. Res. (2013) 46, 2834–2846.

[12] M. Whitby & N. Quirke. Fluid flow in carbon nanotubes and nanopipes. Nat. Nanotechnol. (2007) 2, 87–94.

[13] D. Stein, M. Kruithof & C. Dekker. Surface-charge-governed ion transport in nanofluidic channels. Phys. Rev. Lett. (2004) 93, 035901.

[14] C. Duan & A. Majumdar. Anomalous ion transport in 2-nm hydrophilic nanochannels. Nat. Nanotechnol. (2010) 5, 848–852.

[15] I. Siretanu, D. Ebeling, M.P. Andersson, S.L.S. Stipp, A. Philipse, M.C. Stuart, D. van den Ende, & F. Mugele, Direct Observation of Ionic Structure at Solid-Liquid Interfaces: A Deep Look Into the Stern Layer. Sci. Rep. (2014)4, 4956.

[16] S. Xue. et al. Influence of alkali metal cations on the hydrogen evolution reaction activity of Pt, Ir, Au, and Ag electrodes in alkaline electrolytes. Chem. Electro. Chem. (2018) 5, 2326–2329.

[17] M. Sipil?. et al. Molecular-scale evidence of aerosol particle formation via sequential addition of HIO3. Nature (2016) 537, 532–534.

[18] J. Payandeh, T. Scheuer, N. Zheng & W. A. Catterall. The crystal structure of a voltage-gated sodium channel. Nature (2011) 475, 353–358.

[19] K. J. Tielrooij, N. Garcia-Araez, M. Bonn & H. J. Bakker. Cooperativity in ion hydration. Science (2010) 328, 1006–1009.

[20] H. Ohtaki & T. Radnai. Structure and dynamics of hydrated ions. Chem. Rev. (1993) 93, 1157.

[21] E. H. Lieb. Exact solution of the problem of the entropy of two-dimensional ice. Phys. Rev. Lett.(1967)18,692.

[22] C. P. Herrero & R. Ramírez. For the 3D ices the loop corrections to W?N are in the range from about 0.27% for XII to about 1.6% for ice IV, see, Configurational entropy of hydrogen disordered ice polymorphs. J. Chem. Phys. (2014)140,234502.

[23] M. Carrillo-Tripp, H. Saint-Martin & I. Ortega-Blake. A comparative study of the hydration of Na+ and K+ with refined polarizable model potentials. J. Chem. Phys. (2003) 118, 7062.

[24] T. Kumagai. et al. H-atom relay reactions in real space. Nat. Mater. (2012) 11, 167–172.

[25] A. Shiotari & Y. Sugimoto. Ultrahigh-resolution imaging of water networks by atomic force microscopy. Nat. Commun. (2017) 8, 14313.

[26] Court, C.J., Cole, J.M. Magnetic and superconducting phase diagrams and transition temperatures predicted using text mining and machine learning. npj Comput. Mater. (2020) 6, 18.

[27] Kabiraj, A., Kumar, M. & Mahapatra, S. High-throughput discovery of high Curie point twodimensional ferromagnetic materials. npj Comput Mater 6, 35 (2020).

[28] L. Li. et al. Machine learning-enabled identification of material phase transitions based on experimental data: Exploring collective dynamics in ferroelectric relaxors. Sci. Adv. (2018) 4: eaap867.

[29] P. Ponte, R.G. Melko. Kernel methods for interpretable machine learning of order parameters. Phys. Rev. B (2017) 96(20):205146.

[30] Q. Ni, M. Tang, Y. Liu & Y. Lai. Machine learning dynamical phase transitions in complex networks. Phys. Rev. E (2019) 100, 052312.

[31] X. Y. Dong, F. Pollmann, X. F. Zhang. et al. Machine learning of quantum phase transitions. Phys. Rev. B (2018) 99, 121104.

[32] Y. Zhang, A. Mesaros, K. Fujita. et al. Machine learning in electronic quantum matter imaging experiments. Nature (2019)570, 484–490.

[33] M. Ziatdinov, A. Maksov & S.V. Kalinin. Learning surface molecular structures via machine vision. npj Comput. Mater. (2017)3, 31.

[34] Alldritt. et al. Automated structure discovery in atomic force microscopy. Sci. Adv. 6: eaay6913 (2020).

[35] Rivenson, Y. et al. Deep learning microscopy. Optica (2017) 4, 1437 –1443.

[36] T. R. Liu. et al. Deep learning-based super-resolution in coherent imaging systems. Sci. Rep. (2019) 9, 3926.

[37] E. Nehme. et al. Deep-STORM: super-resolution single-molecule microscopy by deep learning. Optica (2018) 5, 458–464.

[38] Rivenson. Y. et al. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci. Appl. (2018) 7, 17141.

[39] Malkiel. I. et al. Plasmonic nanostructure design and characterization via deep learning. Light Sci. Appl. (2018)7, 60.

[40] Zhang, T. et al. Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks. Photonics Res. (2019) 7, 368–380.

[41] P. R. Wiecha. et al. Pushing the limits of optical information storage using deep learning. Nat. Nanotechnol. (2019) 14, 237-244.

[42] M. Usman, Y. Z. Wong, C. D. Hill. et al. Framework for atomic-level characterization of quantum computer arrays by machine learning. npj Comput. Mater. (2020) 6, 19.

[43] A. Krull, P. Hirsch, C. Rother. et al. Artificial-intelligence-driven scanning probe microscopy. Commun. Phys. (2020) 3, 54.

[44] 黄文坚,唐源. Tensorflow 实战[M].北京:电子工业出版,2017.

[45] G. Binning, H. Rohrer, C. Geber & E. Weibel. Scanning tunneling microscopy. Phys. Rev. Lett. (1982) 49, 57.

[46] 贾贤. 材料表面现代分析方法[M]. 北京:化学工业出版社,2009.

[47] G. Binnig, C. G. Quate, C. Gerber. Atomic force microscope. Phys Rev Lett. (1986) 56, 930-933.

[48] 陈鹏程, 仉君, 袁秉凯, 程志海, 裘晓辉. 基于qPlus技术的扫描探针显微学研究进展[J]. 科 学通报, 2013.

[49] 刘心萌,王昊,王懿,叶仕丽,许瑞,程志海. 铁铂纳米线的磁力显微术研究[J]. 大学物理, 2019,38(6): 60-64.

[50] R. 加西亚. 振幅调制原子力显微术[M]. (程志海, 裘晓辉, 译者). 北京: 科学出版社, 2016.

[51] T. R. Albrecht, P. Grtitter, D. Horne. et al. Frequency modulation detection using high d cantilevers for enhanced force microscope sensitivity, J. Appl. Phys. 1991, 69, 668.

[52] Gross L, Mohn F, Moll N, et al. The chemical structure of a molecule resolved by atomic force microscopy. Science (2009) 325,1110–1114.

[53] 伊恩·古德费洛,约书亚·本吉奥,亚伦·库维尔. 深度学习[M]. (赵申剑,黎彧君,符天凡, 李凯,译者).北京:人民邮电出版社,2017.

开放日期:

 2020-06-06    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式