- 无标题文档
查看论文信息

中文题名:

 治理土壤板结的竹基“人工蚯蚓”    

姓名:

 张安    

学科名称:

 理学 - 化学类 - 化学    

学生类型:

 学士    

学位名称:

 理学学士    

学校:

 中国人民大学    

院系:

 化学与生命资源学院    

专业:

 化学拔尖人才实验班    

第一导师姓名:

 王亚培    

完成日期:

 2025-05-20    

提交日期:

 2025-06-06    

中文关键词:

 土壤板结 ; 湿度制动 ; 人工蚯蚓    

外文关键词:

 Soil Compaction ; Humidity-driven Actuators ; Artificial Earthworm    

中文摘要:

粮食安全是保障我国经济发展的重要保障,保障粮食安全根本在于保护耕地。土壤板结问题影响了全球约25%的土壤,也是威胁我国粮食安全的重要因素,对我国农业发展造成了巨大威胁。造成土壤板结的原因多种多样,除了依靠人为的行为治理外,天然的土壤板结治理依赖于蚯蚓的蠕动行为,但是蚯蚓的数量也因为各种原因在不断减少。寻找一种可行性的蚯蚓代替方案是现代农业面临的重要问题。受湿度驱动制动器和竹子天然结构的启发,我们发现竹子可能是人工蚯蚓的良好替代方案,其具有低成本、绿色、环保等优点。我们研究了竹子湿度驱动制动的原理,以及影响其制动力的因素,将其应用于土壤板结的治理,为解决土壤板结问题、促进现代农业的发展提供了一种思路。

外文摘要:

Food security is a crucial guarantee for China's economic development, and fundamentally lies in protecting arable land. Soil compaction affects approximately 25% of soils globally and poses a significant threat to China's food security, severely endangering agricultural development. The causes of soil compaction are diverse. In addition to human-driven remediation efforts, natural solutions rely on the burrowing activity of earthworms. However, earthworm populations are declining due to various factors. Finding a feasible alternative to earthworms is a major challenge for modern agriculture.Inspired by humidity-driven actuators and the natural structure of bamboo, we discovered that bamboo may serve as an effective artificial earthworm substitute, offering advantages such as low cost, sustainability, and eco-friendliness. We investigated the principles of humidity-driven actuation in bamboo and the factors influencing its actuation force. Applying the artificial earthworms to remediate soil compaction provides a novel approach to addressing the issue and advancing modern agriculture..

论文分类号:

 O63    

总页码:

 24    

参考文献:

[1]杨翠红,林康,高翔,等.“十四五”时期我国粮食生产的发展态势及风险分析[J].中国科学院院刊,2022,37(08):1088-1098.

[2]国家统计局关于2024年粮食产量数据的公告[EB/OL].https://www.gov.cn/lianbo/bumen/202412/content_6992479.htm. 2025年4月25日访问.

[3]2024年我国小麦、玉米、稻米和大豆等进口分国别分析[EB/OL]. https://www.shaangrain.com/default/view/20250122163l3rl.html.2025年4月25日访问.

[4]SMITH P, POCH R M, LOBB D A, et al. Status of the World’s Soils[J]. Annual Review of Environment and Resources, 2024, 49(1): 73-104.

[5]KELLER T, SANDIN M, COLOMBI T, et al. Historical increase in agricultural machinery weights enhanced soil stress levels and adversely affected soil functioning[J]. Soil and Tillage Research, 2019, 194: 104293.

[6]赵俭波.土壤板结的成因与解决途径[J].现代农业科技,2014,(13):261-264.

[7]HAMZA M A, ANDERSON W K. Soil compaction in cropping systems[J]. Soil and Tillage Research, 2005, 82(2): 121-145.

[8]安晶.东北地区棕壤和黑土旱田土壤板结机理研究[D].沈阳:沈阳农业大学博士毕业论文,2016:12-13.

[9]FRENE J P, PANDEY B K, CASTRILLO G. Under pressure: elucidating soil compaction and its effect on soil functions[J]. Plant and soil, 2024, 502(267-278).

[10]BOUWMAN L A, ARTS W B M. Effects of soil compaction on the relationships between nematodes, grass production and soil physical properties[J]. Applied Soil Ecology, 2000, 14(3): 213-222.

[11]BLOUIN M, ZUILY-FODIL Y, PHAM-THI A T, et al. Belowground organism activities affect plant aboveground phenotype, inducing plant tolerance to parasites[J]. Ecology Letters, 2005, 8(2): 202-208.

[12]Fritz VA, Allmaras RR, Pfleger FL, Davis DW. 1995. Oat residue and soil compaction influences oncommon root rot (Aphanomyes euteiches) of peas in a fine-textured soil. Plant and Soil, 171(2):235-244.

[13]FIERER N. Earthworms’ place on Earth[J]. Science, 2019, 366(6464): 425-426.

[14]14FONTE S J, HSIEH M, MUELLER N D. Earthworms contribute significantly to global food production[J]. Nature Communications, 2023, 14(1): 5713.

[15]VAN GROENIGEN J W, LUBBERS I M, VOS H M J, et al. Earthworms increase plant production: a meta-analysis[J]. Scientific Reports, 2014, 4(1).

[16]XIONG Q, ANG B W K, JIN T, et al. Earthworm‐Inspired Multi‐Material, Adaptive Strain‐Limiting, Hybrid Actuators for Soft Robots[J]. Advanced Intelligent Systems, 2023, 5(3): 2200346.

[17]TIRADO J, DO C D, MOISSON DE VAUX J, et al. Earthworm‐Inspired Soft Skin Crawling Robot[J]. Advanced Science, 2024, 11(23).

[18]LOU P, TIAN L, YAO M, et al. Photothermal‐Driven Crawlable Soft Robot with Bionic Earthworm‐Like Bristle Structure[J]. Advanced intelligent systems, 2023, 6(1): 2300540.

[19]KARIPOTH P, CHRISTOU A, PULLANCHIYODAN A, et al. Bioinspired Inchworm‐ and Earthworm‐like Soft Robots with Intrinsic Strain Sensing[J]. Advanced Intelligent Systems, 2021, 4(2): 2100092.

[20]PARK N, KIM J. Hydrogel‐Based Artificial Muscles: Overview and Recent Progress[J]. Advanced Intelligent Systems, 2020, 2(4): 1900135.

[21]YANG Z, AN Y, HE Y, et al. A Programmable Actuator as Synthetic Earthworm[J]. Advanced Materials, 2023, 35(36): 2303805.

[22]LI Z, CHEN C, MI R, et al. A Strong, Tough, and Scalable Structural Material from Fast‐Growing Bamboo[J]. Advanced Materials, 2020, 32(10): 1906308.

开放日期:

 2025-06-09    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式