- 无标题文档
查看论文信息

中文题名:

 北京市某污水处理厂微生物气溶胶定量风险评价    

姓名:

 羊童    

学科名称:

 环境科学    

学生类型:

 学士    

学位名称:

 理学学士    

学校:

 中国人民大学    

院系:

 环境学院    

专业:

 环境科学    

第一导师姓名:

 程荣    

完成日期:

 2016-05-12    

提交日期:

 2016-05-12    

中文关键词:

 微生物气溶胶 ; 健康风险 ; 定量风险评价    

中文摘要:

因其成分复杂,来源多样,活性易变以及容易传播感染,微生物气溶胶给人类健康带来了严重威胁。作为典型污染源之一,污水处理厂的微生物气溶胶污染已逐步引起国内外学者的广泛关注。本文通过大量的文献比较以及咨询美国国家职业安全卫生研究所(NIOSH)的专家后,选择大肠杆菌和沙门氏菌这两种致病性较强的肠道病原微生物作为指示微生物,研究北京市某污水处理厂春季晴朗天气上午时段的微生物气溶胶污染状况,并对其进行定量风险评价。研究应用Anderson六级空气采样器和自然沉降法两种方法采样,参考中国人群暴露参数手册进行暴露评价,类比水中两种病原微生物的剂量-反应关系模型,用微生物定量风险评价(QMRA)的方法对北京市某污水处理厂的格栅间、A/A/O反应池和污泥脱水车间三个主要工艺环节进行人体感染风险评价。结果发现,自然沉降法在测定微生物气溶胶浓度时误差较大,但定性分析结果与Anderson六级空气采样器结果相近;大肠杆菌和沙门氏菌污染在研究中的三个工艺环节呈现相同的空间分布规律,即:浓度大小依次为,A/A/O反应池(2120 0 CFU/m3和1413 0 CFU/m3)>污泥脱水车间(706 0 CFU/m3和1060 499 CFU/m3)>格栅间(0 CFU/m3和353 499 CFU/m3)。从单次感染风险的值来看,沙门氏菌的单次感染风险Pinf是大肠杆菌单次感染风险的60倍至80倍。除了格栅间没有检出沙门氏菌外,A/A/O反应池和污泥脱水车间两个工艺环节沙门氏菌都是主要的风险微生物。其年累积感染风险值在两个环节都接近1,表示有极高的感染风险。

 

关键词:微生物气溶胶;  健康风险;  定量风险评价

外文摘要:

Microbial aerosols are complex, multi-sourced, subjected to change and infectious. Therefore, they posed a threat to human health. Waste water treatment plant (WWTP), being a major source which generates microbial aerosols, has been attracting more and more attention from the academia. This research aims at quantitatively assessing (Quantitative Microbial Risk Assessment) the aerosol risks to human health in major water treatment processes, which are grids, A/A/O tanks and sludge thickening sites, of a Beijing WWTP on a sunny morning in spring. Anderson six-stage bio-samplers and gravitational settling method are employed as contrasts to each other. After a careful literature review and taking into account the expertise from in U.S. National Institute for Occupational Safety and Health, E.coli and salmonella are chosen to be surrogate agents as they are typical markers of fecal contamination and are easily cultured and distinguished. Hereinafter are the findings: for the two sampling methods above, the results are agreed qualitatively but the settling method failed to accurately measure the concentration of ambient microbial aerosols. The concentration of E.coli and salmonella in all three processes are in the same sequence, which is, for salmonella: A/A/O tanks (2120 0 CFU/m3), sludge thickening (706 0 CFU/m3) and grids (0 CFU/m3). For E.coli: A/A/O tanks (1413 0 CFU/m3), sludge thickening (1060 499 CFU/m3) and grids (353 499 CFU/m3). E.coli and salmonella are high in exposure risk, and salmonella is even higher in single exposure risk (Pinf) and annual accumulative exposure risk (Pa for salm=1 in both A/A/O tanks and sludge thickening) with exception of that in grid, where salmonella was not detected.

 

Key Words:  microbial aerosols; health risk; quantitative risk assessment


 

总页码:

 25    

参考文献:

参考文献

[1] 杜茜, 李劲松. 微生物气溶胶污染监测检测技术研究进展[J]. 解放军预防医学杂志, 2011, 29(6):455-458.

[2] 孙平勇, 刘雄伦, 刘金灵, 等.空气微生物的研究进展[J]. 中国农学通报, 2010, 26(11):336.

[3] Anders W. [The sewage workers in Berlin].[J]. Psychiatria Polska, 1954, 139(4):657-68.

[4] J?rgen Thorn MD PhD, Kerekes E. Health effects among employees in sewage treatment plants: A literature survey [J]. American Journal of Industrial Medicine, 2001, 40(2):170–179.

[5] FANG Weitao. Research on diffusion of microbiological aerosols by aeration [D] .Wuhan: Huazhong University of Science and Technology, 2007.

[6] 高敏, 李琳, 刘俊新. 典型城市污水处理工艺微生物气溶胶逸散研究[J]. 给水排水, 2010, 36(9):146-150.

[7] YU Miao, SUN Qun, SONG Zhiwen, et al. Investigation of microbial aerosol in a full-scale surface flow constructed wetland[J] .Environmental Pollution &Control, 2010 , 32(2):8-12.

[8] Sánchez-Monedero M A. Effect of the aeration system on the levels of airborne microorganisms generated at wastewater treatment plants.[J]. Water Research, 2008, 42(14):3739–3744.

[9] Fracchia L, Pietronave S, Rinaldi M, et al. Site-related airborne biological hazard and seasonal variations in two wastewater treatment plants.[J]. Water Research, 2006, 40(10):1985–1994.

[10] Walser S M, Gerstner D G, Brenner B, et al. Evaluation of exposure–response relationships for health effects of microbial bioaerosols – A systematic review[J]. International Journal of Hygiene & Environmental Health, 2015, 218(7):577-589.

[11] 段小丽. 中国人群暴露参数手册[M]. 中国环境出版社, 2013.

[12] Mattsby I, Rylander R. Clinical and immunological findings in workers exposed to sewage dust.[J]. Journal of Occupational Medicine Official Publication of the Industrial Medical Association, 1978, 20(10):690-2.

[13] Clark C S. Potential and Actual Biological Related Health Risks of Wastewater Industry Employment [J]. Journal - Water Pollution Control Federation, 1987, 59(12):999-1008.

[14] Fannin K F, Vana S C, Jakubowski W ,. Effect of an activated sludge wastewater treatment plant on ambient air densities of aerosols containing bacteria and viruses.[J]. Applied & Environmental Microbiology, 1985, 49(5):1191-6.

[15] Heng B H, Goh K T, Doraisingham S ,, et al. Prevalence of hepatitis A virus infection among sewage workers in Singapore.[J]. Epidemiology & Infection, 1994, 113(1):121-8.

[16] J?rgen T, Lena B, Titti J, et al. Measurement strategies for the determination of airborne bacterial endotoxin in sewage treatment plants.[J]. Annals of Occupational Hygiene, 2002, 46(6):549-54.

[17] Scheuchenzuber W J, Eskew M L, Zarkower A. Comparative humoral responses to Escherichia coli and sheep red blood cell antigens introduced via the respiratory tract.[J]. Experimental Lung Research, 1987, 13(2):97-112.

[18] Dean RB. Assesment of disease rates among sewer workers in Copenhagen, Denmark.[J] Env Health Effects Research Series. 1978. EPA-600/1-78-007.

[19] Khuder S A, Arthur T ,, Bisesi M S, et al. Prevalence of infectious diseases and associated symptoms in wastewater treatment workers.[J]. American Journal of Industrial Medicine, 1998, 33(6):571–577.

[20] Lundholm M ,, Rylander R ,. Work related symptoms among sewage workers.[J]. British Journal of Industrial Medicine, 1983, 40(3):325-9.

[21] Scarlett-Kranz J M, Babish J G, Strickland D ,, et al. Health among municipal sewage and water treatment workers.[J]. Toxicology & Industrial Health, 1987, 3(3):311-9.

[22] Nethercott J R, Holness D L. Health status of a group of sewage treatment workers in Toronto, Canada.[J]. American Industrial Hygiene Association Journal, 1988, 49(7):346-350.

[23] Andren S ,, Brugha R ,. Health effects among workers in sewage treatment plants.[J]. Occupational & Environmental Medicine, 1999, 56(11):790-790.

[24] 王振华, 李怀宝. 污水气溶胶造成大气微生物污染的初步探讨[J]. 陕西环境, 2002, 9(3):22-23.

[25] Carducci A, Tozzi E, Rubulotta E, et al. Assessing airborne biological hazard from urban wastewater treatment[J]. Water Research, 2000, volume 34(4):1173-1178(6).

[26] 郁庆福, 郭奕芳, 卢玲,等. 污水微生物气溶胶吸入感染危险性探讨[J]. 中国卫生检验杂志, 1992, (3):138-141.

[27] 余贵英, 任铁玲, 蔡承铿,等. 某污水处理厂空气气溶胶中微生物检测[J]. 中国卫生检验杂志, 1999, (5):356-357.

[28] Anne O, Silvia H, Trinh V D. Influence of seasons and sampling strategy on assessment of bioaerosols in sewage treatment plants in Switzerland.[J]. Annals of Occupational Hygiene, 2005, 49(5):393-400.

[29] Letizia F, Stefano P, Maurizio R, et al. Site-related airborne biological hazard and seasonal variations in two wastewater treatment plants.[J]. Water Research, 2006, 40(10):1985-94.

[30] 韩云平, 李琳, 刘俊新,等. 污水处理厂生物气溶胶中微生物种群及化学成分特征研究[C]// 2014中国环境科学学会学术年会. 2014.

[31] 刘建伟, 张俊超, 马文林,等. 城市污水处理厂微生物气溶胶污染和粒径分布特征[J]. 生态环境学报, 2013, (4):657-661.

[32] Heinonen-Tanski H, Reponen T, Koivunen J. Airborne enteric coliphages and bacteria in sewage treatment plants.[J]. Water Research, 2009, 43(9):2558–2566.

[33] Brandi G, Sisti M, Amagliani G. Evaluation of the environmental impact of microbial aerosols generated by wastewater treatment plants utilizing different aeration systems[J]. Journal of Applied Microbiology, 2000, 88(5):845-852.

[34] 邱雄辉, 李彦鹏, 牛铁军,等. 城市污水处理厂生成的微生物气溶胶的污染特性[J]. 环境科学, 2012, 33(7):2191-2196.

[35] Cannon, R.E. Aerosol release of cyanophages and coliforms from activated sludge basis. Journal of WPCF, 1983, 55, 1070-1074.

[36] Kenline, P.A. and Scarpino, P.V. Bacterial air pollution from sewage treatment plants. American Industrial Hygiene Association Journal,1972,33, 346-352.

[37] Napolitano, P.J. and Rowe, D.R. (1966) Microbial content of air near sewage treatment plants. Water Sewage Works 113, 480-483.

[38]邱雄辉, 李彦鹏, 张燕茹,等. 污水处理厂微生物气溶胶的暴露风险评价[J]. 安全与环境学报, 2012(3):89-92.

[39] 张振兴,王江权,郑祥. 水体病原微生物定量风险评价:历史、现状与发展趋势[J]. 环境科学学报. 2014.

[40]Haas C N, Rose J B, Gerba C P. Quantitative Microbial Risk Assessment, 2nd Edition[J]. 1999.

[41] 国家药典委员会. 中华人民共和国药典[M]. 中药医药科技出版社, 2010.

[42] Thorn J, Kerekes E. Health effects among employees in sewage treatment plants: A literature survey [J]. American Journal of Industrial Medicine, 2001, 40(2):170–179.

[43] Steyn M ,, Jagals P ,, Genthe B ,. Assessment of microbial infection risks posed by ingestion of water during domestic water use and full-contact recreation in a mid-southern African region.[M]// Strategic management in business =. s.n.,, 1983:301-308.

[44] USEPA. 2012. EPA/100/J-12/001. Guideline for Microbial Risk Assessment: Pathogenic Microorganisms with Focus on Food and Water[S]. 2015-01-15, online at http://www.epa.gov/raf/microbial.htm

[45] 戴景林. 评空气微生物平板采样的奥梅梁斯基换算式[J]. 环境与健康杂志, 1994(4):173-176.

[46] Masclaux F G, Hotz P, Gashi D, et al. Assessment of airborne virus contamination in wastewater treatment plants[J]. Environmental Research, 2014, 133C(2):260-265.

开放日期:

 2016-05-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式